CAU

The role of mechanical properties

Kiel University Christian-Albrechts-Universität zu Kiel

in DPI carriers

Zeredescht Majid¹, Ricarda Leister², Constanze Mueller², Regina Scherließ¹ ¹ Department of Pharmaceutics and Biopharmaceutics, Kiel University, Gutenbergstr. 76, 24118 Kiel, Germany ² Meggle GmbH & Co.KG, Megglestr. 6-12, 83512 Wasserburg am Inn, Germany

Introduction

- Aerodynamic performance of interactive blends depends on mixing time/energy [1]
- Leading hypothesis assumes the effect of so called press-on-forces (i.e deformation of particles during mixing) [2,3]
- Mechanical properties of particles should predict the behaviour of fine particle fraction (FPF) with respect to mixing time if the hypothesis holds true

Aim

Verify the relationship between mechanical properties and FPF

- 1) Create model carriers with varying plasticity
- 2) Evaluate their mechanical properties
- 3) Investigate aerodynamic performance
- 4) Link mechanical properties and aerodynamic performance

Results

Methods

1) Model Carrier Preparation

- Stabiliser phase
- Span 80 1.5%
- Polymer phase& Eudragit RL
 - Liquid paraffine PEG 4000 (plasticizer) \rightarrow different concentrations
 - Acetone

2) Analysis of Mechanical Properties

Solvent Evaporation Vacuum Filtration Washing (Hexane)

Model Carriers with varying plasticity

	F2 ΓΟΟμm	Ισομη	F3
0% PEG	1	0% PEG	25% PEG
Formulation	x10 [µm]	x50 [µm]	x90 [µm]
F1	219.85 ± 1.11	297.51 ± 0.93	352.28 ± 1.14
F2	220.18 ± 0.88	299.01 ± 0.99	351.51 ± 1.16
F3	219.55 ± 1.41	298.13 ± 1.01	351.77 ± 1.77
API*	0.609	3.25	6.91
700 [Wba] 600 500	<u>Mechan</u>	ical Propertie	<u>95</u>

3) Aerodynamic Performance (laser diffraction)

Conclusion and Outlook

- There is a clear correlation between the course of the fine particle fraction as a function of the mixing time and the mechanical properties of the carrier particles
- The next steps include repeating the tests using impactor analysis (Fast Screening Impactor)
- The relevance of mechanical properties for interactive powder mixtures will be further investigated with excipients relevant for inhalation.

[1] Thalberg K, Åslund S, Skogevall M, Andersson P. Dispersibility of lactose fines as compared to API in dry powders for inhalation. Int J Pharm. 2016;504:27–38

[2] Podczeck F, Newton JM. Development of an ultracentrifuge technique to determine the adhesion and friction properties between particles and surfaces. J Pharm Sci. 1995;84(9):1067–1071

[3] Hertel M, Schwarz E, Kobler M, Hauptstein S, Steckel H, Scherließ R. The influence of high shear mixing on ternary dry powder inhaler formulations. Int J Pharm. 2017;534(1–2):242–250

Wednesday 6th, Thursday 7th & Friday 8th December 2023

Drug Delivery to the Lungs 2023, Edinburgh, Scotland 6th – 8th December