

Kiel University Christian-Albrechts-Universität zu Kiel

Spray Drying of mRNA Lipoplexes to Produce an Inhalable Dry Powder Formulation for mRNA Therapeutics

Jana Schembera^{1*}, Ricarda Leister², Constanze Müller², Regina Scherließ¹ ¹Department of Pharmaceutics and Biopharmaceutics, Kiel University, Germany ²Meggle GmbH & Co. KG, Wasserburg am Inn, Germany *jschembera@pharmazie.uni-kiel.de

Introduction

- Many respiratory pathogens enter the body through the respiratory tract, the lungs and the mucosal immune system are promising targets for therapeutic interventions.
- Liquid vaccines face the risk of chemical degradation and physical instability \rightarrow Solid formulations can secure stability without challenging storage conditions. Since spray drying offers continuous manufacturing with high yields, we chose spray drying as production technic.

Objective

- This study aimed to produce a dry powder formulation with intact mRNA and a satisfactory aerodynamic performance.
 - \rightarrow To achieve that goal, we aimed to find the optimal spray drying parameters. Then, we assessed and optimised the aerodynamic performance.

Aerodynamic Performance

During spray drying, mRNA lipoplexes have to withstand several stress factors, especially thermal stress. The maximum temperature a product is subjected to during this process is the outlet temperature.

 \rightarrow What is outlet temperature at which the mRNA remains intact?

How?

Why?

- Spray drying firefly luciferase mRNA lipoplexes in mannitol matrix at:
 - inlet temperature 120 °C
 - outlet temperature 50, 60, 70 °C
- Transfecting spray dried powder into CALU-3 und A549 cells
- DLS measurements to analyse z-average and zetapotential

Why?

High Fine Particle Fraction (FPF) and low residue in the capsules are requirements for a satisfactory Aerodynamic Performance.

 \rightarrow How is the aerodynamic performance of the spray dried formulation itself?

How?

- RS01 Inhaler, 5 capsules, 20 mg each, 80 l/min
- Next Generation Impactor

Outcome?

- FPF of 35%
- ca. 20% of powder
- remaining in the capsules
- \rightarrow Improvement necessary

Next Generation Impactor

RS01

Improving Aerodynamic Performance

Sweeper crystals

Why?

Sweeper crystals are intended to sweep the capsules' inner surface clean of remaining powder, allowing the powder to follow the air stream out of the capsule

 \rightarrow Are sweeper crystals able to help the powder out of the capsule?

How?

- As sweeper crystals four lactose qualities were chosen: InhaLac 70, 120, 180, 251
- Blending spray dried powder + lactose sweeper crystals in a turbula mixer (weight ratio 2 + 1)

Spray dried mRNA lipoplexes in mannitol matrix

Outcome?

- In our blends, sweeper crystals...
 - did not reduce remaining powder in the _ capsules
 - did not significantly improve the FPF —
 - facilitated (especially INH70) capsule filling _ with similar FPF

FР 20-10-

Figure 3: FPF of the spray dried material (SD) and its blends with sweeper crystals, bar = mean of 3 NGI measurements

contact information:

Next step: increase dispersibility by adding leucine

Career Development Grant 2022

The authors like to acknowledge DDL for DDL2 the financial support through the Career **Development Grant.**

Drug Delivery to the Lungs 2023, Edinburgh, Scotland 6th – 8th December 2023